MEDICINAL PLANTS: Conservation, Cultivation and Utilization

National Seminar on Medicinal Plants: Conservation, Cultivation and Utilization 9-11 March 2006

Editors
Prof. A.K. Chopra
Dr. D.R. Khanna
Dr. G. Prasad
Dr. D.S. Malik
Dr. R. Bhutiani

2007
DAYA PUBLISHING HOUSE
Delhi - 110 035
The knowledge of medicinal plants came from our ancient literature i.e. Vedas. The literature describes plants for the cure of human ailments and diseases. The word medicinal plant often leads to the thought of some miraculous and supernatural cures. In India, medicinal plants have played a significant role in the development of our ancient Materia Medica.

With the changing times and fast developmental changes, the importance of medicinal plants i.e. conservation, cultivation and utilization of medicinal plants has declined at an alarming rate despite of their golden past for which the rapid extension of the allopathic system of medicinal treatment is the main impediment.

Medicinal plants are our local heritage with global importance. An estimate measures that about 72,000 plant species including lichens to larger trees, have medicinal values. In Ayurveda about 2000 plant species are considered as medicinal.

Medicinal and aromatic plants are found throughout South Asia in forest areas from plains to Himalayas, with greatest concentration in the tropical and subtropical belts and arid region of Thar Desert. India recognizes more than 2,500 plant species with medicinal values.

India is endowed with a rich wealth of medicinal plants, placing our country as one of the top producers of herbal medicines. But today due to urbanization, industrialization and other anthropogenic activities the total forest area is reducing at an alarming rate and hence the total cultivation/collection of medicinal plants is reducing in India. If this trend of deforestation, urbanization etc. continues, we may lose the wealth of medicinal plants, which may ultimately affect the economy of our country.

The present book is aimed to fulfill the lacuna regarding awareness, importance, benefits, current status, conservation, cultivation and utilization of medicinal plants, for those who are working in this field and also the general public.
Through this book we attempt to determine and analyze the conservation, cultivation and utilization measures of medicinal plants. All eminent scientists of India have enthusiastically contributed in this book.

We are grateful to the contributors, who have impaired benefits of their research work and without their support the outcome of this book simply would not have been possible. We are confident that this book will serve its purpose. We also thank our publishers M/s Daya Publishing House, New Delhi for bringing up the book in a fantastic way.

Editors
Contents

Preface v

List of Contributors xiii

Introduction xxi

1. Traditional Health Care in a Remote Area of District Chamoli (Garhwal), Uttarakhand: What Could Do With? 1
 Hemlata, Chandra P. Kuniyal and Y.P.S. Pangtey

2. Medicinal Plants of India: Need for Their Preservation 11
 Maya Ram Uniyal

3. Angiospermous Seeds of Medicinal Importance in Gujarat State 17
 Premendra Singh, S. Sisodia and Jinesh Shah

4. Management of Viral Diseases of Ashwagandha 25
 L.P. Awasthi, R.V. Singh, Pardeep Kumar and Shyam Singh

5. Ayurvedic Garden: A Novel Concept in Society for Education and Popularization of Medicinally Important Plants 29
 Niraj N. Upadhyay, Mitesh B. Panchal and Vishal K. Muliya

6. Isolation of Larvicidal Ingredient from the Leaves of Catharanthus roseus for Mosquito Control 37
 M.F. Alam, A.K. Chopra and V.K. Dua
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>Phenological Study of Naturalised Medicinal Herbs of Agra</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Manjari Kumari and A.K. Singh</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>An Ethnomedicinal Plants in Melghat of Amravati District: A Need for Conservation</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>U.S. Patil</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Variability Measurements in Three Wild Collections of Solanum nigrum L. Complex</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Manisha Dhasmana and R.K.S. Rathore</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Antibacterial Activity of Mixtures of Essential Oils</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>R.C. Dubey and Anika Rana</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Herbs, Health and Environment</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Vinod Upadhyay</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Ecological Studies on Medicinal Plants of Neeru Watershed, (J&K)</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Harish Chander Dutt</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Assessment of Influence of SO₂ Pollution on Biochemical and Antioxidant Defense System of Medicinal Plant (Azadiracta indica): A Case Study</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>D.R. Khanna and Neetu Saxena</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>Distribution Patterns of Coccinellids and Their Role in Biological Control of Mustard Aphids</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>Pushpa Singh and Sachin Srivastava</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Pharmaceutical Products and Anti-microbial Activity of Bryophytes: Uses of “Green Brain”</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>Kajal Srivastava and Shivom Singh</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Effect of Alcoholic Extract of Three Adiantum Species of Ferns Formulation for Stamina in Male and Female Albino Mice Subjected to Forced Swim Stress</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>D.K. Bhatia and R.K. Pande</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>Phytochemical, Antifungal and Antibacterial Studies of Premna cordifolia (Stem)</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>J.S. Jangwan, N.K. Agarwal and J.S. Kathait</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>Phytochemical Examination of Pittosporum nepaulense and its Effect on Microorganism as an Antibacterial Agent</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>J.S. Kathait, Veena Joshi, N.K. Agarwal and J.S. Jangwan</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>Isolation of Active Chemical Constituents and Study of Active Anticancer Alkaloid from the Root Extract of Pongamia pinnata (Vent)</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>Pawan Kumar Sagar</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>antibacterial activity of medicinal plants against dental infections</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>Prabhat and Navneet</td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>Conservation of Some Useful Medicinal Plants of Haridwar District in Uttaranchal State</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>Anil Kumar Dhiman</td>
<td></td>
</tr>
<tr>
<td>22. Medicinal Plant Diversity in Pindari Glacier Area of Nanda Devi Biosphere Reserve (NDBR), Uttaranchal</td>
<td>167</td>
<td></td>
</tr>
<tr>
<td>Laxmi Rawat, H.B. Vashistha, Deepak Kholiya and S.K. Kamboj</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23. Effect of Three Different Boiling Times for Extraction of Aqueous Extract of Peepal Leaf on Growth of Myrothecium roridum Tode ex Fr.</td>
<td>179</td>
<td></td>
</tr>
<tr>
<td>Vishal K. Muliya and Arun Arya</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24. Rare Medicinal Plants as Used in the Folklore of Garhwal Himalaya</td>
<td>183</td>
<td></td>
</tr>
<tr>
<td>P.P. Badoni, A.K. Dobriyal, P.K. Bahuguna, H.K. Joshi and (Late) G.S. Negi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25. Antifeedant Activity of Neem (Azadiracta indica A. Juss) on Spilosoma obliqua Walker</td>
<td>189</td>
<td></td>
</tr>
<tr>
<td>Dinesh Kumar Bhardwaj, M.P. Tyagi and Ashish Panwar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26. Modern Dosage Forms in Ayurveda: A Study from Aryabhishak</td>
<td>193</td>
<td></td>
</tr>
<tr>
<td>Vishal K. Muliya</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27. Development of a Database for Identification of Powdered Crude Drugs</td>
<td>199</td>
<td></td>
</tr>
<tr>
<td>S.P. Bhatnagar and V. Kaushik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28. Ethnomedicinal Flora of West Nimar (Khargone) District, M.P., India</td>
<td>207</td>
<td></td>
</tr>
<tr>
<td>S.K. Pathak and Sunita Pathak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29. Makoi (Solaum nigrum) and Punarnava (Boerhavia diffusa): Effective Herbal Drug in Liver and Kidney Disorders</td>
<td>213</td>
<td></td>
</tr>
<tr>
<td>D.R. Khanna, Pradeep Sharma and Pramod Kumar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30. Isolation of New Isoflavonoids from Bowdichia virgiliodes</td>
<td>217</td>
<td></td>
</tr>
<tr>
<td>C.P. Singh, Ashuthosh Sharma, C. Shekhar and Alok Gupta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31. Ayurvedic Quick Remedies</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>Arun Chugh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32. Approach to Cure Tamak Shwas (Asthma) by Panchkarma</td>
<td>231</td>
<td></td>
</tr>
<tr>
<td>Arun Chugh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33. Status of Medicinal Plants Found in a Montane Forest of Garhwal Himalaya</td>
<td>237</td>
<td></td>
</tr>
<tr>
<td>Asha Dobhal, Pramod Kumar, G.S. Rajiwar and Manisha Dobhal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34. Biodiversity of Cultivated Fruits Plants in Jaunpur Development Block of District Tehri Garhwal, Uttaranchal</td>
<td>259</td>
<td></td>
</tr>
<tr>
<td>Pramod Kumar, Suman Bisht and Asha Dobhal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35. Physico-chemical Screening of Abutilon indicum Roots</td>
<td>269</td>
<td></td>
</tr>
<tr>
<td>Shri Krishna, Amit Kumar and Navmeet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36. Comparative Growth Pattern in Nine Cultures of Ash Gourd</td>
<td>273</td>
<td></td>
</tr>
<tr>
<td>Miti Rani and R.K.S. Rathore</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>37.</td>
<td>Medicinal Plants of Rigveda</td>
<td>281</td>
</tr>
<tr>
<td></td>
<td>Deepika Chauhan, Navneet and Prabhat</td>
<td></td>
</tr>
<tr>
<td>38.</td>
<td>Utilization and Conservation of Medicinal Plants</td>
<td>299</td>
</tr>
<tr>
<td></td>
<td>Sudha Dubey and Jyotsana Bhoraskar</td>
<td></td>
</tr>
<tr>
<td>39.</td>
<td>Antimicrobial Properties of Herbal Tooth Powders</td>
<td>303</td>
</tr>
<tr>
<td></td>
<td>Sanjay, Navneet, Murali Manohar and Prabhat</td>
<td></td>
</tr>
<tr>
<td>40.</td>
<td>Conservation Practices and Utilization Strategies of Medicinal Plants in Bhandara District of Vidarbha Region</td>
<td>319</td>
</tr>
<tr>
<td></td>
<td>Deepak D. Ramteke, Nitin Dongarwar, S.B. Zade and C.J. Khune</td>
<td></td>
</tr>
<tr>
<td>41.</td>
<td>Industrial Utilization and Promotion of Medicinal Plants in India</td>
<td>325</td>
</tr>
<tr>
<td></td>
<td>Shikha Singhal and Amit Agarwal</td>
<td></td>
</tr>
<tr>
<td>42.</td>
<td>Biodeterioration of Aonla (Emblica officinalis) and Their Products</td>
<td>331</td>
</tr>
<tr>
<td></td>
<td>Anjma Bhanti, Manisha, Divya Goyal and Seema Bhadauria</td>
<td></td>
</tr>
<tr>
<td>43.</td>
<td>Studies on In vitro Antimicrobial Activity of Essential Oil of the Nardostachys jatamansi and Zanthoxylum armatum</td>
<td>341</td>
</tr>
<tr>
<td></td>
<td>Anupama Gautam, Shailu Dalal and G.R.S. Bisht</td>
<td></td>
</tr>
<tr>
<td>44.</td>
<td>Clinical Evaluation of the Effect of Centella asiatica on Cerebral Higher Functions</td>
<td>357</td>
</tr>
<tr>
<td></td>
<td>Uttam Kumar Sharma, Ajay Kumar Sharma and C.M. Sharma</td>
<td></td>
</tr>
<tr>
<td>45.</td>
<td>Green Tea and Benefits</td>
<td>369</td>
</tr>
<tr>
<td></td>
<td>Shailu Dalal and Anupama Gautam</td>
<td></td>
</tr>
<tr>
<td>46.</td>
<td>Medicinal Plant Conservation</td>
<td>375</td>
</tr>
<tr>
<td></td>
<td>Rekha Sharma</td>
<td></td>
</tr>
<tr>
<td>47.</td>
<td>Antibacterial Activity of Polar Fraction of Callistemon lanceolatus and Callistemon viminalis</td>
<td>377</td>
</tr>
<tr>
<td></td>
<td>Harish Chandra, Arun Pratap Singh, Jatin Kumar Srivastava, Gyanendra Awasthi and Ajay Singh</td>
<td></td>
</tr>
<tr>
<td>48.</td>
<td>Optimization of Procedure for Dyeing of Cotton and Wool Fibres with Bark of Juglans regia as Natural Dyes</td>
<td>383</td>
</tr>
<tr>
<td></td>
<td>S.C. Sati, J.S. Jagwan and Manisha Dobhal</td>
<td></td>
</tr>
<tr>
<td>49.</td>
<td>Optimization of Procedure for Dyeing of Wool, Cotton and Silk Fibres</td>
<td>387</td>
</tr>
<tr>
<td></td>
<td>S.C. Sati, Manisha Dobhal and J.S. Jagwan</td>
<td></td>
</tr>
<tr>
<td>50.</td>
<td>Medicinal Plant Utilization and Conservation</td>
<td>389</td>
</tr>
<tr>
<td></td>
<td>Sudha Dubey</td>
<td></td>
</tr>
<tr>
<td>51.</td>
<td>Demographic Dispersion of Weed Flora of Rice, Maize and Wheat in Doon Valley of Uttaranchal</td>
<td>393</td>
</tr>
<tr>
<td></td>
<td>Arun Gupta, S.P. Joshi, Pramod Uniyal and Asha Dobhal</td>
<td></td>
</tr>
</tbody>
</table>
52. A Survey of Wound Healing Plants Used by the Tribal People of Khargone District of Madhya Pradesh
 S.K. Mahajan, Virendra Mandloi and Amit Raghuvanshi

403

53. Angiospermic Diversity, Conservation and Documentation of Some Interesting and Rare Angiosperms of West Nimar District of M.P.
 S.K. Mahajan, C.L. Dulkar, M.M. Keshare and Chetna Sawale

409

54. Healthy Heart by Ayurvedic Herbs
 V.K. Pandey and Reena Pandey

415

55. An Approach to Cure Paralysis and Arthritis Using *Sida cordifolia* by Panchakarma
 Harish Chauhan, D.R. Khanna and R. Bhutiani

 Recommendations

 Index

425

427
List of Contributors

A.K. Chopra
Department of Zoology and Environmental Science, Gurukula Kangri University, Haridwar, India

A.K. Dobriyal
Department of Zoology, H.N.B. Garhwal University Campus, Pauri Garhwal – 246 001, Uttaranchal

A.K. Singh
Department of Botany, R.B.S. College, Agra

Ajay Kumar Sharma
Professor and Head, P.G. Department of Kayachikitsa, National Institute of Ayurveda, Jaipur

Ajay Singh
Department of Chemistry, Dolphin (P.G.) Institute of Biomedical and Natural Science, V.P.O. Manduwala, Near to Suddhowala, Chakrata Road, Dehradun – 248 007 (U.A.)

Alok Gupta
Research Division, Chemistry Department, Sahu Jain College, Najibabad (U.P)

Amit Agarwal
Assistant Professor, Department of Computer Science and Information Technology Graphic Era Institute of Technology, Dehradun – 248 002 (UA)

Amit Kumar
Department of Chemistry, Gurukula Kangri University, Hardwar – 249 404, Uttaranchal, India
Amit Raghuwanshi
Paharsinghpura, Haweli Path, Khargone – 451 001 (M.P.)

Anika Rana
Department of Botany and Microbiology, Gurukul Kangri University, Hardwar – 249404

Anil Kumar Dhiman
Information Scientist, Gurukul Kangri University, Haridwar – 249 404, Uttaranchal

Anjma Bhanti
Department of Botany, Raja Balwant Singh College, Agra – 282 002, India

Anupama Gautam
Department of Botany and Microbiology, Gurukul Kangri University, Haridwar

Arun Arya
Department of Botany, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara

Arun Chugh
Navoday Ayurved and Panchkarm, A-29, Sri Ram Nagar Colony, Opposite Railway Station, Jwalapur – 249 407, Haridwar, U.A.

Arun Gupta
Ecology Research Laboratory, Department of Botany, D.A.V. (PG) College, Dehra Dun – 248 007, Uttaranchal

Arun Pratap Singh
Department of Microbiology, Dolphin (P.G.) Institute of Biomedical and Natural Science, V.P.O. Manduwala, Near to Suddhowala, Chakrata Road, Dehradun – 248 007 (U.A.)

Asha Dobhal
Department of Botany, Government Post Graduate College, New Tehri, Tehri Garhwal – 249 001

Ashish Panwar
K.V. College, Machhra, Meerut (U.P.)

Ashuthosh Sharma
Research Division, Chemistry Department, Sahu Jain College, Najibabad (U.P)

C. Shekhar
Research Division, Chemistry Department, Sahu Jain College, Najibabad (U.P)

C.J. Khune
Department of Zoology, M.B. Patel College, Sakoli

C.L. Dulkar
Botany Department, Government P.G. College, Khargone – 451 001 (M.P.)
C.M. Sharma
Associate Professor, P.G. Department of Neurology, SMS Medical College, Jaipur

C.P. Singh
Research Division, Chemistry Department, Sahu Jain College, Najibabad (U.P)

Chandra P. Kuniyal
Herbal Research and Development Institute, Gopeshwar-Chamoli – 246 401, Uttaranchal, India

Chetna Sawale
Research Student, 7, Kunda Nagar, Khargone – 451 001 (M.P.)

D.K. Bhatia
PG Department of Zoology, DBS (PG) College, Dehradun

D.R. Khanna
Department of Zoology and Environmental Science, Gurukul Kangri Vishwavidyalaya, Haridwar – 249 404, U.A.

Deepak D. Ramteke
Department of Botany, M.B. Patel College, Sakoli

Deepak Kholiya
Forest Ecology and Environment Division, Forest Research Institute, Dehradun, Uttaranchal, India

Deepika Chauhan
Department of Botany and Microbiology, Gurukula Kangri University, Haridwar – 249 404, India

Dinesh Kumar Bhardwaj
Department of Biotechnology, Shri Ram College, Muzaffarnagar – 251 001

Divya Goyal
Department of Botany, Raja Balwant Singh College, Agra – 282 002, India

G.R.S. Bisht
Sardar Bhagwan Singh (P.G) Institute of Biomedical Sciences and Research, Balawala, Dehradun

(Late) G.S. Negi
Department of Chemistry, H.N.B. Garhwal University Campus, Pauri Garhwal – 246 001, Uttaranchal

G.S. Rajwar
Department of Botany, Govt. P.G. College, Rishikesh, Dehradun – 249 201

Gyanendra Awasthi
Department of Biochemistry, Dolphin (P.G.) Institute of Biomedical and Natural Science, V.P.O. Manduwala, Near to Suddhowala, Chakrata Road, Dehradun – 248 007 (U.A.)
M.F. Alam
Department of Zoology and Environmental Science, Gurukula Kangri University, Haridwar, India

M.M. Keshare
Botany Department, Government P.G. College, Khargone – 451 001 (M.P.)

Manisha Dhasmana
Department of Botany, Raja Balwant Singh College, Agra – 282 002, India

Manisha Dobhal
Department of Chemistry, H.N.B. Garhwal University Campus, Badhshaithaul Tehri, Garhwal

Manisha
Department of Botany, Raja Balwant Singh College, Agra – 282 002, India

Manjari Kumari
Department of Botany, R.B.S. College, Agra

Maya Ram Uniyal
Director, Farm, Maharishi Ayurvedic (NEPZ) Products, Noida – 201 305, U.P.

Mitesh B. Panchal
Department of Botany, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara – 390 002

Miti Rani
Department of Botany, RBS College, Agra

Murali Manohar
Faculty of Engineering and Technology, Gurukul Kangri Vishwavidyalaya, Haridwar – 249 404

N.K. Agarwal
Department of Zoology, HNB Garhwal University, SRT Campus, Badshahi Thaul – 249 199, Tehri Garhwal (U.A.) India

Navneet
Department of Botany and Microbiology Gurukula Kangri University, Hardwar – 249 404, Uttarakhand

Neetu Saxena
Department of Zoology and Environmental Sciences, Gurukul Kangri University, Haridwar, India

Niraj N. Upadhyay
Department of Botany, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara – 390 002

Nitin Dongarwar
P.G. Department of Botany, Nagpur University Nagpur
P.K. Bahuguna
Department of Zoology, H.N.B. Garhwal University Campus, Pauri Garhwal – 246 001, Uttaranchal

P.P. Badoni
Department of Chemistry, H.N.B. Garhwal University Campus, Pauri Garhwal – 246 001, Uttaranchal

Pardeep Kumar
Department of Plant Pathology, N.D. University of Agriculture and Technology, Kumarganj, Faizabad – 224 229 (U.P.)

Pawan Kumar Sagar
State Drug Testing Laboratory, Rishikul Government Ayurvedic Pharmacy, Haridwar, Uttaranchal

Prabhat
Department of Botany and Microbiology, Gurukul Kangri University, Hardwar – 249 404

Pradeep Sharma
Department of Zoology and Environmental Science Gurukul Kangri Vishwavidyalaya, Haridwar – 249 404, U.A.

Pramod Kumar
Department of Botany HNB Garhwal University Campus, B. Thaul, Tehri Garhwal – 249 199

Pramod Uniyal
Government (PG) College, Rishikesh, Uttaranchal

Premendra Singh
Department of Botany, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara – 390 002

Pushpa Singh
Department of Animal Science, Faculty of Applied Sciences, M.J.P. Rohilkhand University, Bareilly – 243 006, U.P. India

R. Bhutiani
Department of Zoology and Environment Science, Gurukul Kangri University, Haridwar

R.C. Dubey
Department of Botany and Microbiology, Gurukul Kangri University, Hardwar – 249404

R.K. Pande
PG Department of Zoology, DBS (PG) College, Dehradun

R.K.S. Rathore
Department of Botany, Raja Balwant Singh College, Agra – 282 002, India

R.V. Singh
Department of Plant Pathology, N.D. University of Agriculture and Technology, Kumarganj, Faizabad – 224 229 (U.P.)
Reena Pandey
Lecturer, CDM College of Ayurveda, Jagadhari, Distt. Yamuna Nagar (HR)

Rekha Sharma
Assistant Professor, Government P.G. College, Mhow

S. Sisodia
Department of Botany, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara – 390 002

S.B. Zade
Department of Zoology, M.B. Patel College, Sakoli

S.C. Sati
Department of Chemistry, H.N.B. Garhwal University Campus, Srinagar, Garhwal

S.K. Kamboj
Forest Ecology and Environment Division, Forest Research Institute, Dehradun, Uttaranchal, India

S.K. Mahajan
Post Graduate Department of Botany, Government College, Khargone – 451 001 (M.P.)

S.K. Pathak
Department of Zoology, Government P.G. College, Mhow

S.P. Bhatnagar
Department of Pharmaceutical Sciences, Birla Institute of Technology, Ranchi – 835 215

S.P. Joshi
Ecology Research Laboratory, Department of Botany, D.A.V. (PG) College, Dehra Dun – 248 007, Uttaranchal

Sachin Srivastava
Department of Animal Science, Faculty of Applied Sciences, M.J.P. Rohilkhand University, Bareilly – 243 006, U.P. India

Sanjay
Department of Botany and Microbiology, Gurukul Kangri Vishwavidyalaya, Haridwar – 249 404

Seema Bhadauria
Department of Botany, Raja Balwant Singh College, Agra – 282 002, India

Shailu Dalal
Department of Biotechnology, IIT, Roorkee

Shikha Singhal
S-69, Shivalik Nagar, BHEL, Haridwar – 249 403 (UA)
Shivom Singh
P.G. Environmental Management, Department of Botany, Bareilly College, Bareilly – 243 005, (U.P.)

Shri Krishna
Department of Chemistry, Gurukula Kangri University, Hardwar – 249 404, Uttaranchal, India

Shyam Singh
Department of Plant Pathology, N.D. University of Agriculture and Technology, Kumarganj, Faizabad – 224 229 (U.P.)

Sudha Dubey
Holkar Science College, Indore

Suman Bisht
Department of Botany, HNB Garhwal University Campus, Tehri Garhwal

Sunita Pathak
Department of Economics Government P.G. College, Mhow

U.S. Patil
Department of Botany, Bharatiya Mahvidyalaya, Amravati

Uttam Kumar Sharma
Reader, Department of Kayachikitsa, State Ayurvedic College, Gurukul Kangri, Hardwar

V. Kaushik
Department of Pharmaceutical Sciences, S.B.S.P.G.I of Biomedical Sciences and Research, Balawala, Dehradun – 248 161 (UA)

V.K. Dua
National Institute of Malaria Research (ICMR) F/S, BHEL, Haridwar, India

V.K. Pandey
Reader, Sharir Kriya, Government Ayurveda College and Hospital, Gurukul Kangri Haridwar (U.A.)

Veena Joshi
School of Natural Product, Department of Chemistry, HNB Garhwal University, SRT Campus, Badshahi Thaul – 249 199, Tehri Garhwal (U.A.) India

Vinod Upadhyay
Hon. Advisor, Himalik Herbs India, Jwalapur, Haridwar – 249 407, India

Virendra Mandloi
Kunda Nagar (Near Canal), Khargone – 451 001 (M.P.)

Vishal K. Muliya
Department of Botany, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara – 390 002

Y.P.S. Pangtey
Department of Botany, DSB Campus Kumaun University, Nainital – 263 002, Uttaranchal
The history of medicine and surgery dates back perhaps to the origin of the human race. In India, the Vedas are the epic poems, which contains rich material on the herbal medicines of that time. The Charaka Samhita, written by the physician Charaka, followed the Vedas. Charaka known as the father of medicine in India provide medicinal treatise, which includes details of around 350 herbal medicines most of these continue to be gathered from wild plants to meet the demand of the medical profession. Thus, despite the rich heritage of knowledge on the use of plant drugs, little attention had been paid to grow them as field crops in the country till the latter part of the nineteenth century.

The book, *Yellow Emperor’s Classic of Internal Medicine* is the earliest Chinese medical text written in 1st century BC and listed dozens of medicinal plants, their uses and related spells and incantations.

India is endowed with a rich wealth of medicinal plants. These plants have made a good contribution to the development of ancient Indian Materia medica. India one of the 12 mega biodiversity centers of the world is one of the richest country in plant wealth and medicinal plant heritage. Human beings have been utilizing plants for basic preventive and curative health care since time immemorial. Recent estimates suggest that over 9,000 plants have known medicinal applications in various cultures and countries, and this is without having conducted comprehensive research amongst several indigenous and other communities (Farnsworth and Soejarto 1991).

The Foundation for Revitalization of Local Health Traditions, a nongovernmental organization (NGO) dedicated to conservation of medicinal plants and a renewed appreciation of India’s traditional health systems, describes India’s rich plant-based medical heritage in these words:

“India’s traditional medical systems are part of a time-honoured and time-tested culture that still intrigues people today. A culture that has successfully used nature to treat primary and complex ailments for over 3,000 years obviously has a contemporary relevance. In an age when toxic drugs are
increasingly unwelcome and when thinking people are using viable alternatives, India’s medical heritage must be documented, saved and used”

Medicinal and aromatic plants are important products found in forest areas throughout India, from the plains to the Himalayas, with the greatest concentration in the tropical and subtropical belts. About 2,500 plant species found in India, 1400 in Sri Lanka, 700 in Nepal are known for having medicinal value. Some of these, found at high altitudes in particularly stressful environments, grow very slowly and cannot live elsewhere. Others are more broadly distributed and adapt more easily to different ecological conditions.

During the past decade, a dramatic increase in exports of medicinal plants attests to worldwide interest in these products as well as in traditional health systems. In the last 10 years, for example, India’s export of medicinal plants has trebled. But with most of these plants being taken from the wild, hundreds of species are now threatened with extinction because of over harvesting, destructive collection techniques, and conversion of habitats to crop-based agriculture. Hence it becomes necessary to conserve, cultivate and properly utilize the medicinal plants for sustainable development of the country.

The rich knowledge base of countries like India in medicinal plants and health care has led to a keen interest by pharmaceutical companies to use this knowledge as a resource for research and development programs in the hope of discovering and producing new drugs.

The scientific studies of such plants are carried out all over in India since vedic times (i.e. more than 6000 years B.C.). This science is known as Ayurveda i.e. Ayu means life and veda means knowledge. In Sanskrit knowledge of life is called “Ayurveda”. The system of Ayurveda in its diagnostic part differs very much from the Allopathic system and hence the property ascribed to medicinal plants also differs. The plants are the basic source of knowledge of Modern Medicine and still continue the same position.

Traditional medicines are used by about 60 per cent of the world’s population. These are not only used for primary health care not just in rural areas in developing countries, but also in developed countries as well where modern medicines are predominantly used. While the traditional medicines are derived from medicinal plants, minerals, and organic matter, the herbal drugs are prepared from medicinal plants only.

Use of plants as a source of medicine has been inherited and is an important component of the health care system in India. In the Indian systems of medicine, most practitioners formulate and dispense their own recipes, hence this requires proper documentation and research. Public, academic and government interest in traditional medicines is growing exponentially due to the increased incidence of the adverse drug reactions and economic burden of the modern system of medicine. There are about 45,000 plant species in India, with concentrated hotspots in the region of Eastern Himalayas, Western Ghats and Andaman & Nicobar Island. The officially documented plants with medicinal potential are 3000 but traditional practitioners use more than 6000.

India is the largest producer of medicinal herbs and is appropriately called the botanical garden of the world. There are currently about 250,000 registered medical practitioners of the Ayurvedic system (total for all traditional systems: approximately 291,000), as compared to about 700,000 of the modern medicine system. In rural India, 70 per cent of the population is dependent on the traditional system of medicine, the Ayurveda.
The major hindrance in the amalgamation of herbal medicines into modern medical practices is the lack of scientific and clinical data, and better understanding of efficacy and safety of the herbal products. To ensure the quality and safety of its products and practices standardization is of vital importance.

Keeping in view the above mentioned problems related to medicinal plants an attempt has been made to pool together the expertise ideas in this book for proper conservation, cultivation and utilization of medicinal plants through advanced technologies, along with the help of science and knowledge given by Vedas and finally for sustainable and economic development of the Nation.

D.R. Khanna
R. Bhutiani
Chapter 1

Traditional Health Care in a Remote Area of District Chamoli (Garhwal), Uttarakhand: What Could Do With?

Hemlata¹, Chandra P. Kuniyal¹* and Y.P.S. Pangtey²

¹Herbal Research and Development Institute, Gopeshwar-Chamoli – 246 401, Uttarakhand, India
²Department of Botany, DSB Campus Kumaun University, Nainital – 263 002, Uttarakhand

ABSTRACT

Ethnomedicobotanical surveys were conducted in a remote area namely Ghat block of district Chamoli, Uttarakhand. A total 191 plants were recorded to be used in the traditional health care system. Of the total plants used in curing various ailments, 50.26 per cent were herbs; 20.42 per cent were trees and remaining were either herbs or under shrubs, shrubs, climbers, shrubs or small trees and grasses. All the plants used traditionally in various remedies were belonging to 83 families of angiosperms and a single family of pteridophyte namely Equisitaceae. More than 53.00 per cent plants used in traditional remedies were belonging to 16 families namely; Ranunculaceae, Lamiaceae, Asteraceae, Apiaceae, Rosaceae, Fabaceae, Solanaceae, Zingiberaceae, Rutaceae, Liliaceae, Orchidaceae, Caesalpiniaceae, Polygonaceae, Euphorbiaceae, Araceae and Ericaceae. It was interesting to note that 69 diseases and other health problems are traditionally cured in this area. Root part (21.65 per cent) was predominantly used plant part in the indigenous medicinal preparations, followed by leaves (16.23 per cent), whole plant (12.04 per cent), seeds (9.42 per cent) and fruits (8.90 per cent). Other plant parts or by products used were rhizomes, stem/shoot, tuberous roots or tubers, flowers, bulbs, bark, fruit kernels, root

* Phone +91-1372-253854, 252572, Fax: +91-1372-253855. Email: cpkuniyal@rediffmail.com