About the Authors

Dr. Jnanendra Rath, born on 1976, in Belapada of Bolangir District of Orissa state, was awarded Ph.D. degree of Utkal University in 2003 for his work on “Ecophysiological studies on algae of Chilika lake, East coast of India”. This book is the product of his work on algae of Chilika lagoon. He has vast experience in the field of wetland management particularly on biodiversity and utilization of economically important algae as well as higher plants. He developed a data base on seaweeds of India under the project “Digitised Inventory of Marine Resources: Seaweeds”. Presently he is working as a Research Associate in Regional Research Laboratory, Bhubaneswar under the National Project on “Coastal Ocean Monitoring and Prediction Systems”, sponsored by Department of Ocean Development, Government of India. He published several scientific papers in well cited journals. Dr. Rath has a hobby on wildlife and nature photography. His aim in science is to work extensively on conservation of biodiversity of wetlands and coastal ecosystems of India. Contact: jnanendra01@hotmail.com

Dr. Siba Prasad Adhikary, was born on 1954 in the village Maniakati under Sorada block, Ganjam district of Orissa state. He worked on heterotrophic growth and nitrogen fixation of cyanobacteria and obtained Ph.D. degree in 1980. He joined as lecturer at Utkal University in 1987 and subsequently promoted to Reader in 1994. He visited Germany as a DAAD fellow from June 1982 to September 1983, and July 1991 to June 1992, and also worked as a JSPS post doctoral fellow at the National Institute for Basic Biology, Okazaki, Japan from July 1991 to June 1992. Recently he was awarded D.Sc. degree in Botany by Utkal University for his work on “Strategies of cyanobacteria under diverse environmental condition”. Dr. Adhikary is a Fellow of Indian Botanical Society and was a member of the Executive Council and editorial board of the Phycological Society of India. He has to his credit 86 research papers published in various reputed journals of India and abroad and 28 chapters in edited books. He was awarded the Young scientist medal by Indian Botanical Society in 1983, Samanta Chandrasekhar award in Life Sciences for 1999 by the Orissa Vigyan Academy and the prestigious UGC Research Award under 9th plan. He has guided 13 students who have obtained Ph.D. degree. Currently he is associated as In-charge of the coordinating Unit for Eastern India in All India Coordinated Project on Taxonomy (AICOPTAX) - research in Algae and is actively engaged in research on biodiversity mapping of freshwater algae of Orissa, West Bengal, Assam and North Eastern states during the 10th plan period. Contact: adhikary2k@hotmail.com
Chilika, the largest brackish water lagoon in Asia along the Orissa coast, attracts largest concentration of migratory waterfowl found anywhere in the Indian subcontinent. It is also famed for its fishery resources. It harbours an assemblage of marine, brackish and fresh water biota and on account of its rich biodiversity, Chilika was one of the two sites to be listed first as Internationally important wetland under the Ramsar Convention in the year 1981.

Though algal flora of Chilika lake has been studied several times during this century, most of these works were repetitive in nature. None of the authors have studied the algae of the lagoon in every season covering the entire catchment area in a particular year. Hence it was essential to survey the lake for algal forms occurring in different seasons in several collection trips so as to prepare an authentic algal distribution map of the lake. This book presents a detail account of algae of the lagoon collected during the year 1999 to 2001, documented with microphotographs and cameralucida diagrams and identified by us. The taxonomic account of these algal forms has also been given. Besides the documentation of algal forms, resource mapping and biomass estimation of economically important algal species in different salinity gradients of the lake was carried out for the first time and presented in this book. Viable protocol for agar-agar extraction from *Gracilaria verrucosa* occurring in the lake and its possible commercial exploitation is also given. Details of algal forms with descriptions, photographs, line diagrams and the site of occurrence of each species in Chilika lake can be used as a monograph for future study of algae of Chilika lake and other wetlands else where. In addition, the book can serve as a valuable document containing base line data to evaluate the potential algal resources of the lagoon and to develop management strategies while assessing the biodiversity changes in the lake during the years to come.

Dr. Jnanendra Rath
Dr. Siba Prasad Adhikary
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>v</td>
</tr>
<tr>
<td>List of Tables</td>
<td>ix</td>
</tr>
<tr>
<td>List of Plates</td>
<td>xi</td>
</tr>
<tr>
<td>1. Chilika Lake and Its Biodiversity</td>
<td>1</td>
</tr>
<tr>
<td>1.1 General features of Chilika lake</td>
<td></td>
</tr>
<tr>
<td>1.2 Origin and history of the lagoon</td>
<td></td>
</tr>
<tr>
<td>1.3 Importance of Chilika lake</td>
<td></td>
</tr>
<tr>
<td>1.4 Chilika lake as a Ramsar Site</td>
<td></td>
</tr>
<tr>
<td>1.5 Hydrology and water quality</td>
<td></td>
</tr>
<tr>
<td>1.5.1 Salinity</td>
<td></td>
</tr>
<tr>
<td>1.5.2 Dissolve oxygen (DO)</td>
<td></td>
</tr>
<tr>
<td>1.5.3 Hydrogen ion concentration (pH)</td>
<td></td>
</tr>
<tr>
<td>1.5.4 Total alkalinity</td>
<td></td>
</tr>
<tr>
<td>1.5.5 Transparency</td>
<td></td>
</tr>
<tr>
<td>1.5.6 Water depth</td>
<td></td>
</tr>
<tr>
<td>1.5.7 Water temperature</td>
<td></td>
</tr>
<tr>
<td>1.5.8 Nutrients</td>
<td></td>
</tr>
<tr>
<td>1.6 Climate</td>
<td></td>
</tr>
<tr>
<td>1.7 Problems encountered by the lake</td>
<td></td>
</tr>
<tr>
<td>1.7.1 Siltation</td>
<td></td>
</tr>
<tr>
<td>1.7.2 Choking of the inlet and outer channel</td>
<td></td>
</tr>
<tr>
<td>1.7.3 Shrinkage of water-spread area</td>
<td></td>
</tr>
<tr>
<td>1.7.4 Decrease in salinity</td>
<td></td>
</tr>
<tr>
<td>2. Algal Flora of Chilika Lake</td>
<td>38</td>
</tr>
<tr>
<td>2.1 The study sites</td>
<td></td>
</tr>
<tr>
<td>2.2 Collection, observation and identification</td>
<td></td>
</tr>
<tr>
<td>2.3 Systematic account of algae of Chilika lake</td>
<td></td>
</tr>
<tr>
<td>3. Algal Biomass of Chilika Lake at Different Salinity Gradient</td>
<td>127</td>
</tr>
<tr>
<td>3.1 Physicochemical characteristics of water</td>
<td></td>
</tr>
<tr>
<td>3.2 Biomass of macro-algae of Chilika lake</td>
<td></td>
</tr>
<tr>
<td>3.3 Biomass of phytoplankton of Chilika lake</td>
<td></td>
</tr>
<tr>
<td>4. Agar Yield of Gracilaria verrucosa at Different Salinity Gradients</td>
<td>164</td>
</tr>
<tr>
<td>4.1 Pre-treatment of the material</td>
<td></td>
</tr>
<tr>
<td>4.2 Extraction of agar</td>
<td></td>
</tr>
<tr>
<td>4.3 Yield of agar</td>
<td></td>
</tr>
<tr>
<td>4.4 Gelling temperature</td>
<td></td>
</tr>
<tr>
<td>4.5 Melting temperature</td>
<td></td>
</tr>
<tr>
<td>4.6 Gel Strength</td>
<td></td>
</tr>
<tr>
<td>4.7 Estimation of 3,6-anhydrogalactose</td>
<td></td>
</tr>
<tr>
<td>4.8 Estimation of sulphate content in agar</td>
<td></td>
</tr>
<tr>
<td>Literature Cited</td>
<td>180</td>
</tr>
<tr>
<td>Index</td>
<td>201</td>
</tr>
</tbody>
</table>
List of Tables

Table 1.1: Checklist of aquatic plants of Chilika lake
Table 1.2: Work done on algae of Chilika lake
Table 1.3: Summary of the survey and taxonomy of marine algae of India
Table 1.4: Summary of the research work on resource potential and biomass of marine algae of India
Table 1.5: Location of the study sites in Chilika lake
Table 2.1: Checklist of algae of Chilika lake found during 2000-2001
Table 2.2: Distribution of algal species in different sectors of Chilika lake
Table 2.3: Matrix of similarity indices of distribution of algae occurring in four sectors of Chilika lake
Table 2.4: Comparison between the species in Chilika lake recorded earlier and in the present study
Table 2.5: List of additional species of algae recorded in the present study not previously reported in Chilika lake
Table 3.1: Biomass of macro-algae of Chilika lake during 2001
Table 3.2: Analysis of variance of macro-algae between seasons and different sectors of Chilika lake
Table 3.3: Quantity of macro-algae estimated in Chilika lake during 2001
Table 3.4: Biomass of Phytoplankton (no. of organisms / litre) in Chilika lake
Table 3.5: Analysis of variance of phytoplankton biomass between seasons and different sectors of Chilika lake
Table 3.6: Correlation co-efficient matrix among different parameters along with phytoplankton and macro-algae in different sector of Chilika lake
Table 4.1: Quality and yield of agar-agar from Gracilaria verrucosa occurring at various sites of Chilika lake with different salinity values
Table 4.2: Quality and yield of agar-agar from Gracilaria verrucosa occurring at different sites with pre-treatment of different concentration of NaOH. (1, 5, 10, 15 per cent w/v)
Table 4.3: Correlation co-efficient matrix among gel strength, per cent yield, per cent 3,6-anhydro galactose and per cent sulphate content of agar-agar extracted from Gracilaria verrucosa from Chilika lake
LIST OF PLATES

Plate 1
Location map of Chilika lagoon in the east coast of India. The artificial separation of the lake into four different sectors has been indicated in the map.

Plate 2

Plate 3

Plate 4
Map of Chilika lake indicating the study sites. 1 = Rambha, 2 = Ghantasila, 3 = Talatala, 4 = Eastern side of Badakuda, 5 = Western side of Badakuda, 6 = Somola, 7 = Cherriakuda, 8 = Gopakuda, 9 = Pathara, 10 = Malatikuda, 11 = INS Chilika, 12 = Kalijai, 13 = Chandrapur, 14 = Balugaon jetty, 15 = Kalijugaswar, 16 = Asthana, 17 = Vasharamunda, 18 = Nalabana, 19 = Nuapada, 20 = Kalupada, 21 = Sorana, 22 = Satapada, 23 = Rambharatia and 24 = Berhampura (Chakanasi).

Plate 5
Figs. 1-6; Habitat of major macro-algae of Chilika lake. 1. Intertidal rocks and pebbles showing growth of macro-algae. 2 & 4. *Enteromorpha* sp. on intertidal rocks. 3. Association of green and red alga *Enteromorpha* sp. and *Gracilaria verrucosa* in the intertidal region of the lake. 5. *Gracilaria verrucosa* from the sandy bottom in the intertidal region of Malatikuda and 6. Growth of *Enteromorpha* sp.

Plate 6

Plate 7

Plate 8

Plate 9

Plate 10

Plate 11

Plate 12

Plate 13

Plate 14

Plate 15

Plate 16

Plate 17

Plate 18

Plate 19

Plate 20
Plate 21

Plate 22

Plate 23

Plate 24

Figs. 1-4; Collection of biomass of macroalgae using a bamboo quadrate (area = 1m²).

Plate 25

Figs. 5 and 6 Species wise segregation of macroalgae and determination of fresh weight using a field balance, Fig. 7 Drying of macro-algae in a hot air oven, Fig. 8 Measuring dry weight using a digital balance.

Plate 26

Salinity level of water of Chilika lake at different sites during summer season.

Plate 27

Salinity level of water of Chilika lake at different sites during rainy season.

Plate 28

Salinity level of water of Chilika lake at different sites during winter season.

Plate 29

Map of Chilika lake showing the area covered for sampling of macroalgae under each sector using one square meter quadrate.

Plate 30

Figs. 1-5; Photographs showing different steps for extraction of agar-agar. Fig. 1 Dried seaweed *Gracilaria verrucosa*, Fig. 2 Dried seaweed *Gracilaria verrucosa*, Fig. 3 Decolorisation of sample after alkali treatment, Fig. 4 Agar gel of *G. verrucosa*, Fig. 5 Gel strength measurement using a 1 cm² cuvette.
Chapter 1

Chilika and Its Biodiversity

Wetlands, encompassing a wide range of inland, coastal, and marine habitats are complex ecosystems sharing the characteristics of both wet and dry environment. Although occupying only 6 per cent of the world’s surface they exhibit enormous diversity (contribute more than 20 per cent of the world’s taxa and genetic resources) based on their genesis, geographical locations, hydrological regimes and substrate factors. The natural functions and rich biodiversity of wetlands gives them an intrinsic value as important as their value to human kind and their real and potential value for exploitation.

Chilika, one of the prominent wetland of India is also the largest brackish water lagoon in Asia situated in the east coast of our country between 19°28’ and 19°54’ N latitude and 85°05’ and 85°38’E longitude (Plate 1). It is spread over Puri, Khurda and Ganjam districts of Orissa. The lagoon is an estuarine one and supports an unique assemblage of marine, brackish water and fresh water species. It is connected with Bay of Bengal on its eastern side through an outlet, which cuts through liner spit that separates the lake from the sea. On the south-western side, the lake is walled by a range of hills and to the north itself in shallow sedge banks and islands just peeping above the surface. Hammmed in between the mountains and the sea, Chilika spreads itself out into a peer-shaped expanse of water. Of these Badakuda, Sanakuda, Nalabana, Kalijai, Ghantasila, Chadheiguha, Arakhakuda and Kankadakuda etc. deserve special mention. The lake receives fresh water from the river Daya and Bhargavi, one of the deltaic branches of river Mahanadi and also from several local streams. Kalijai temple, the abode of the presiding deity of the lake is located on a tiny island that is frequented by large numbers of tourist all round the year. The largest island of the lake, Nalabana is the home of several varieties of migratory water fowl not found any where in the Indian sub-continent. Chilika is known in particular for the large flocks of migratory water fowl that visit the lake from as far as the Caspian sea, lake Baikal, Aral sea, remote parts of Russia, Kirghiz steppes of Mongolia, Central, and south Asia, Ladakh and the Himalayas. The lagoon is the life line for more than 1.5 lakh stake holders who live in and around the lagoon and rely upon the lake’s supply of fish stock and other allied activities. Based on its rich biodiversity and socio-economic importance, Chilika has been designated as a wetland of International Importance and included as one of the first two wetlands under the Ramsar convention in 1981. It is included in the list of wetlands selected for intensive conservation and management by the Ministry of Environment and Forest, Govt. of India and also identified as a priority site for conservation and management by the National wetland, mangrove and coral reef committee of the Ministry of Environment and Forest.

1.1 General Features of Chilika Lake

The pear shaped lagoon has a maximum length of 64.3 km and average width of 20 km. The water-spread area varies between 906 to 1105 km² during summer to monsoon and the water depth in general fluctuates between 0.38 to 4.2 meter. Geographically the lake is circumscribed by (i) rocky hills of eastern ghat along the western and southern margin (ii) a sixty km stretch of coastal barrier along Bay of Bengal in the eastern side, and (iii) the deltic plains of Mahanadi river in the northern part. Several islands are located in the lagoon covering an area of 223 km², which include hills situated both inside the lagoon and around the lagoon. Bramagiri, Kanas and Krushnaprasad blocks of Puri district surrounds Chilika. Krushnaprasad is the largest block in the lagoon. A 35 km long, narrow, outer channel connects the main lagoon to the Bay of Bengal near the village Motto. High tide near this inlet mouth drives in salt water through the channel during the dry months, from December...
to June. With onset of the rain, the rivers falls into the Northern zone are in spate, causing fresh water currents that gradually push the sea water out. As a result of these dynamics, the inlet mouth constantly changes its position. The inlet channel is connected with Chilika at Magarmukh. The other connection with the Bay of Bengal is through Palur canal on the south-eastern side.

Because of the peculiar hydrology of the lake, salinity ranges and gradients are not uniform but vary with site and season. The various natural sources, reservoirs and sinks that regulate the Chilika lagoon system have been presented in Fig. 1.1. During the monsoon the salinity is the lowest and is the highest in the late winter and summer. The varying salinity regime and depth divides the lake into four natural sectors, viz. Northern sector, Central sector, Southern sector, and the Outer channel sector. The rivers Daya and Bhargavi fall into Chilika in the Northern sector, which supply major fresh water input to the lake during monsoon and post monsoon period which contributes about 275,000 cusecs of fresh water to the Northern sector. This zone is relatively shallow (0.5 to 1 m) due to sediment deposits carried by these two rivers and has a salinity ranging between 0 to 10 ppt. During the monsoons (July-September), the river Daya is in spate and the water level of the lake is the highest with an average depth of 3 meters. In this sector current generated by the river out flow is directed towards the sea. The Central sector is deeper than the Northern sector with medium salinity level 5 to 20 ppt and a depth of about 1.5 to 2.5 m. The Southern sector is the deepest of about 2.5 to 3.5 m and has the highest salinity concentration with less fluctuation of salinity from 10 to 20 ppt. The river Rushikulya falls in to the Bay of Bengal close to the Southern sector while the Palur canal connects it to the sea. The fourth zone is the main mouth of Chilika lake along with the 35 km long channel called the Outer channel (salinity up to 32 ppt). It starts from the lake at Magarmukh near village Satapada, and is connected to the sea near Arakhakuda. During the monsoon season, excess fresh water input from the rivers is discharged to the sea, while during the summer (April-June) when the water level is low seawater flows into the lake. This unique spatial and temporal salinity gradient of Chilika lake gives rise to a multitude of niches inhabited by a large diversity of plant and animal species, hence is one of the hotspot of biodiversity of the country (Plate 1).

1.2 Origin and History of the Lagoon

Legend and geology provide interesting contrasts in their versions of the history of Chilika. Many ancient texts mention the Southern sector of Chilika as being a major harbor for maritime commerce, back in the days when the king of Kalinga was known as lord of the sea. Indeed some rocks in the Southern sector are marked by a band of white formed by remains of corals (which are exclusively marine). This band is at a height of 8 meter above the current water level, a clear indication that the area was once marine.

Geological studies tell us that the coastline extended along the western shores of Chilika in the Pleistocene era, and that the entire north-eastern region above Chilika was under the sea. Since then, the coastline has moved considerably eastward (Chatterjee and Goswami, 1966). Similarly, the Konark temple, built on the seashore a few hundred years ago is now over 3 km from the coast. Most of the lagoons seen today were formed as a result of a world wide rise in

Fig. 1.1: Natural Sources, Reservoirs and Sinks for the Chilika Lake System
